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THE MOTION OF A RIGID STAMP ALONG THE BOUNDARY 

OF AN ORTHOTROPIC VISCOELASTIC HALF-PLANE* 

A.A. SRMATKOVA 

There are investigated the contact stresses under a rigid stamp moving at a constant 
velocity along the boundary of an orthotropic viscoelastic half-plane. The problem 
reduces to solving a singular integral equation whose kernel is represented in the 
form of the sum of Cauchy-type singularities and a certain regular function. By 
using Chebyshev polynomials, a solution is constructed for this integral equation. 
The particular case when only shear creep holds is examined as an illustration. 

1. Formulation of the problem. We consider the plane problem of motion of a stamp 
on which a force acts that is the resultant of the pressure existing at the contact area. Let 
the stamp move over the boundary of the half-plane at a certain given constant velocity w.We 
shall consider there to be no friction forces between the stamp and the viscoelastic body, and 
the dimensions of the contact area are given. In the case of arbitrary viscoelasticanisotropy, 
the problem can be solved by the same method, however quite awkward expressions result, con- 
sequently we limit ourselves to the consideration of an orthotropic viscoelastic body. 

The equations relating the strain and stress components in a moving coordinate systemwill 

be /l/ 

E, = Ii’-‘ux + 5 a,Kn (x - E) dE - vE-‘a,, - tj q,K12 (x - E) dE 
-zc -co 

ey = - vE-‘o, - i cs,K,, (x - E) d5 + E-‘a, + i avKm (x - 9 dE 
-Ln -co 

y,=2(1 t v)E-‘z, + i z,K,,(x-t)dF. 

Kij (x - E) = K,,” [W (t WY:] (i, j = 1, 2, 3) 

(1.1) 

To obtain the complete system of equations, the equilibrium equations and relationships 
connecting the strain components to the displacements /l/ must also be written down (weneglect 
inertial forces in the case under consideration). 

Because there are no friction forces between the stamp and the viscoelastic body, the 
tangential forces on the boundary of the viscoelastic half-plane are zero: ~~~ = 0. We shall 
assume the surface of the body outside the stamp to be force-free u"= 0. We considerthat ar= 
const on the section under the stamp. 

2. Finding the Green's function. The equilibrium conditions will be satisfied if 
the stress function Cp(X,y) is introduced. Taking into account (l.l), and the compatibility 
condition, and performing a number of manipulations, we obtain 

(2.1) 

We seek the solution of (2.1) in the form 
I_~--.~-.___----._ _. 
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T (x9 Y) = em W4 $ (Y) (2.2) 

11 (Y) 
We obtain an ordinary differential equation with constant coefficients in the function 

A$Iv (y) + B$” (Y) + c’& (Y) = 0 
A s E-1 + K,,* (ib), C = b” [E-l + Kt,* (ip)] (2.3) 

B = p [- 2~-1+ K12* (is) ?- Kza* ($) - Kss* (if41 

K,j*($)= S K,j(S) exp(-- ifiJ')dS (I, j = 1, X,3) 

0 

(s = s- E is a new independent variable). 
All the roots of the corresponding characteristic equation are distinct, hence the solu- 

tion of (2.3) has the form 

(2.4) 

Using the boundary conditions, we determine the coefficients 

c, = c, = 0, C, = k,l(k, - k,), C, = k,l(k* - kJ 

and we furthermore obtain 
k3 = B_exp (--‘/ziAl-A2_e1), k, = --B+ exp (--‘lziA,+Aa+-l) 

B, = (&fe + Azf2)+, A I+ = F sin 11 +-D sin a 
A,* = F cos q -t_ D cos a 

(2.5) 

(2.6) 

F== -g u-- 2zP + Rz* (@)I2 + I&:* (B)13”* 

0 = UE-’ f RII* (W + [R:;* ~)l’V’~ 
RF (8) 

a=7gqq- 
R:;* (B) RF CB) qf (IN 

E-’ + &I* (B) ’ 
yz 

- u-1 + JG* (B) - E-1 + &I* (B) 

R,j’(B)=~Kij(S)cosBSdS, R~(fl)=JK~j(S)sin~SdS 

C(S) = ’ 40’ IKII (S) + 2K13 (5’) + Ka3 (& - K33 (S)l - 
2 IKs3*3 (S) - K3zZ2 (S) + KnS3(S) + Xla” (S)I f 

Kzaa3 (S) + K33” (S) + Klala (8) 

K3 (S) = Kla (S) + &a (S) - K33 (s) 

where K,,“(S), for instance, has the following construction: 

s 
Klaf'(S)=& (S)K,z(S---s)ds 

0 

Taking account of (2.4)- (2.6) and extracting the real part, we obtain an expression for 
the stress function from (2.2) 

By knowing the stress function 'p (5, Y) the stress components U2,cV,~xy can be determined; 
then by using the relationship between the strain components and the stress components for a 
viscoelastic body, we find &,e,,ys , and finally, determine the displacements TV and V. Thus 
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(2.7) 

p,(p)= IV& +&a* (B)lQdP;- R::(B) Qa@) - 
r.C + &z*(B)1 Qs@) + R:8*@)Q4(B) 

pa(p)= R~((B) Q,(p) + [vE_’ + &*@)I Qa@) - R:;(B) QaW - iE-' + R12*(&1 Q4@) 

Q~(B)=~ndJ~y)d~t 1=1,...,4 
0 

The polynomials qz(p,y) are sufficiently awkward in the general case. Let us presentthe 
expression for one of them 

ql(P,Y)=* {exp(- Tly) @w.sinT,y + 

(TIP- T2)cosT*y)-((T12- T2)cos (T*y- T&- 

2TlTzsin(TtY- Tt.)] +exp(- T,y)[% (2T8TI sin T,y+ 

(T? - Td ~0s Tdy) - (Taa - T,2) cos (T4y + T,) - 

~TIIT~ sin (T4y + T,)]} 

In order to extract the singular component out of the Green's function later, let us 
present the solution of the problem of a moving stamp acting on the boundaryofandelastichalf- 
plane in theformof a Fourier integral. The stress function will have the following form 

cp*(s,y)= - j exp(-&4P(~ + By)casBs@ (2.8) 
0 

The displacement component II* (z) can be represented thus: 

U+(2)l~=--C'~~[(1-v)+(1+v)~y~xexp(-_y)cosP~d~dS 
00 

(2.9) 

3. Transformation of the Fourier integrals. We consider the difference 

C"=lim Id~~PB(B)~o~B~dB[5~da]-1] 
0 0 

Taking account of (2.7) and (2.9), we will have 

m 

Z(x)= j (c"P~[(l -V)+ (1 

m 

+- Y) py] exp (- fly) dy + Ps @)} COS @dS + 1 P4 (p) sin pz dfl (3.1) 

0 0 0 

The integrands in (3.1) enclosed in the braces are regular functions. Denoting the first 
integral in (3.1) by ~,(z)and the second by Z,(Z), we represent them as series of Chebyshev 
polynomials of the second kind U,,(z) (T,(z) are Chebyshev polynomials of the first kind) 

1% (4 = fil WJ, (4, 
1 

Cl*=+ s II (x) T,(z) (1 - s’)-“2 dx, 
-1 

1 

b,=$ * s Iz(x)T~(x)(I --x~)-“~~x , (T, (2) = cos n arccos x, u,, (x) = sin n arccos z) 
-1 

We use the notation 8 = arccosr. Differentiating this equality with respect to 2 and tak- 
ing into account that /2/ 

L 

s 
’ cos (p cos 9) cos ne de = x cos q J, @) 
” 

where J,(p) is the Bessel function, we obtain the following relationships for the coefficients 
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a,, and b,, 

a,=ZcosFi{ " '1 C E- I(1 - 4 + (1 + v)bIe=p(-W dy +P,@)} J,,(B)~P 
0 " 
m 

b,=2sinq ’ 6 P4 0’3) J, @I 43 
0 

We finally have for the displacements v(s) IV=O 

4. Solution of the singular integral equation. The question of determining the 
contact stresses under a stamp moving at a certain constant velocity along the boundary of a 
viscoelastic half-plane can be reduced to the solution of the singular integral equation 

(4.1) 

(L=E/(ZC”v), P(jJ=uv(E)Itro, $=x/a, E=E/a) 

Here Z,f are new independent variables (we later omit the upper bar), 11 1 <a is the con- 
tact area which is considered 

(kdy)] Im dB = & + K* (5 - 5) 

0 

Since K* (I- E) is a regular function, 

ES)-", dt 
-1 

We seek the function characterizing the contact stress P(f) in the form of the series 

P (E) = 2 AJ, (E) (1 - EY” 

We will thus have 

(4.2) 

Let us transform the integral under the first summation sign in (4.2). We introduce the 

notation x = coscp and then according to /2/ 

Taking into account the orthogonality of the Chebyshev polynomials, we will have 

A, + T,’ (I) + k A,, + P, (I) + AonPo t”) 
?I=0 
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If the quantity (dvldx)Itii=O can be expanded in derivatives of the Chebyshev polynomials 

#en we obtain two systems of algebraic equations to find the coefficients A, 
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(4.3) 

Equating terms in identical powers of 5, we obtain k equations with k unknowns A,. Fox 
n> k the remaining coefficients A, are found from the relationship A, = B,nln. 

5. Example. To illustrate the general method of solving the problem, we examine the 
particular case when only shear creep holds. It has been shown /3/ that on the basis of 
numerous experimental investigations materials of the type AG-4S or SVAM can be considered as 
an elastically orthotropic body with shear creep. This permits writing the relationships be- 
tween the strain and stress components in the following form 

Using the deductions obtained above , we represent the expression for the stress function 
in the form 

cp(5,y)= 1 P,@,Y) cosB~dB+~P~(B,u)singzde 
0 0 

where the polynomials &(B,F) and Pn(B,& have the form indicated in Sect-Z, and according to 
the conditions presented above, the quantities therein are 

D = %EBa (x1" + x8", F = “/2Efi3 (x2 + xf)“’ ; a = xdte~ 

0 

X8 = s K (S) sin ps dS, x,=2.E-*+ K (&')cos@S dS 

0 0 
By having a specific expression for the kernel K(S) and performing the computations pre- 

sented in the paper in sequence , we find-%, au, %A fk, %~~Yxtr, 11s v* 

Remark. Existing test data /l/ permit the assertion that the volume strain i.s purely 
elastic in many cases, and there is no volume aftereffect. We require the volume compression 
operator to be constant. Moreover, by considering the viscoelastic body isotropic, we obtain 
&a* = RpB* = Xl** = '/‘&-.s* = K*. 

Taking all the above into account , we write the relation between the strain and stress 
components, According to (2.1), we form an equation for the stress function. By seeking the 
solution in the form (2.2), we arrive at a differential equation of the form (2.3). The roots 
of the corresponding characteristic equation are k,= k4= -$, i.e., the problem is reduced to 
the corresponding problem for an elastic half-plane. 

1. 
2. 

3. 
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